We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Of the Members, By the Members, For the Members!
VacuumFurnaces.com is a Q&A community where vacuum furnace product and service suppliers connect with commercial and captive heat treaters to share their practical skills and know-how and to establish valuable relationships around niche topics of expertise with vacuum furnace end-users in operations, production, training, maintenance, marketing, sales, and engineering.
Non-evaporative getters (NEG) in vacuum heat treating are materials used to maintain or improve the vacuum quality by absorbing gas molecules without evaporating or changing their state. Unlike traditional getters that work by evaporating a material which reacts with and traps gas molecules, NEGs absorb gases through a different mechanism.
Here’s a breakdown of how they work and their benefits:
Absorption Mechanism: NEGs typically consist of materials like zirconium, vanadium, and iron. These materials can absorb gases like hydrogen, nitrogen, oxygen, carbon monoxide, and water vapor at the molecular level. The process usually involves chemical reactions where gas molecules are chemically bonded to the getter material.
Activation Process: NEGs often require an activation process to start working efficiently. This process usually involves heating the getter to a specific temperature, which allows it to react with the gases more effectively.
Long-term Stability: One of the key advantages of NEGs is their long-term stability and efficiency. Unlike evaporative getters that lose their effectiveness over time as the getter material is depleted, NEGs can maintain their gas-absorbing properties for a longer duration.
Cleanliness and Safety: Since NEGs do not evaporate or release any material into the vacuum, they are considered cleaner and safer compared to traditional getters. This is particularly important in processes where contamination needs to be minimized.
Applications: NEGs are widely used in various high-vacuum applications, including semiconductor manufacturing, vacuum tubes, particle accelerators, and vacuum furnaces used in heat treating processes. They are essential in environments where maintaining a high-quality vacuum is crucial for the process’s success.
Limitations: While NEGs offer several advantages, they also have limitations. For instance, they have specific activation conditions and temperature ranges within which they operate effectively. Additionally, once saturated with gas, they need to be reactivated or replaced.
In vacuum heat treating, NEGs play a crucial role in ensuring that the vacuum remains free of unwanted gases, which can otherwise impact the quality of the heat treatment process.