Sign In


Forgot Password?

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.


Have an account? Sign In Now

Sorry, you do not have permission to ask a question, You must login to ask a question. Please subscribe to paid membership


Forgot Password?

Please subscribe to paid membership

Sorry, you do not have permission to ask a question, You must login to ask a question. Please subscribe to paid membership


Forgot Password?

Please subscribe to paid membership

Please briefly explain why you feel this question should be reported.

Please briefly explain why you feel this answer should be reported.

Please briefly explain why you feel this user should be reported.

Sign InSign Up

Vacuum Furnace End-User Q&A Community

Vacuum Furnace End-User Q&A Community Logo Vacuum Furnace End-User Q&A Community Logo

Vacuum Furnace End-User Q&A Community Navigation

  • Home
  • About Us!
  • FAQ Blog
  • Resources
    • Free to Join
    • Answer it Forward
    • What is an FAQ Blog Post?
  • Contact Us
Search
Ask A Question

Mobile menu

Close
Ask a Question
  • Home
  • Categories
  • Questions
    • New Questions
    • Trending Questions
  • FAQ Blog
  • Groups
  • Tags
  • Points Rewards
  • Users
  • Help
  • Home
  • About Us!
  • FAQ Blog
  • Resources
    • Free to Join
    • Answer it Forward
    • What is an FAQ Blog Post?
  • Contact Us

Ask | Share | Growβ„’ - Question & Answer Community

Of the Members, By the Members, For the Members!
VacuumFurnaces.com is a Q&A community where vacuum furnace product and service suppliers connect with commercial and captive heat treaters to share their practical skills and know-how and to establish valuable relationships around niche topics of expertise with vacuum furnace end-users in operations, production, training, maintenance, marketing, sales, and engineering.

Login

Thomas

Ask Thomas
40 Visits
2 Followers
0 Questions
Home/ Thomas/Followers Answers

  • About
  • Questions
  • Polls
  • Answers
  • Best Answers
  • Asked Questions
  • Followed
  • Favorites
  • Posts
  • Followers Questions
  • Followers Answers
  • Followers Posts
  • Followers Comments
  • Groups
  1. Asked: February 25, 2021In: Leak Checking, Testing & Detection

    How do I fix leaks in a vacuum furnace?

    VacuumFurnaces.com Answers
    Added an answer on January 21, 2024 at 10:00 pm
    This answer was edited.

    Fixing leaks in a vacuum system is crucial to maintain optimal performance and efficiency. Remember to prioritize safety when working with vacuum systems and be aware of the potential hazards associated with vacuum leaks. If in doubt, seek professional assistance. Here are the major steps needed toRead more

    Fixing leaks in a vacuum system is crucial to maintain optimal performance and efficiency. Remember to prioritize safety when working with vacuum systems and be aware of the potential hazards associated with vacuum leaks. If in doubt, seek professional assistance.

    Here are the major steps needed to identify and fix leaks in a vacuum furnace:

    1. Isolate the Furnace.
    2. Tighten Connections.
    3. Perform a Leak Check.
    4. Perform a Vacuum Pump Down Test.
    5. Inspect Seals and Gaskets.
    6. Check Vacuum Hoses and Tubing.
    7. Check Flanges and Connections.
    8. Examine Viewing Ports and Windows.
    9. Inspect Heating Elements.
    10. Examine Vacuum Pump and Valves.
    11. Inspect Insulation.
    12. Check for Welding Defects.
    13. Replace Faulty Components.
    14. Perform a Helium Mass Spectrometry Test.
    15. Follow Manufacturer Guidelines:
      — Refer to the furnace’s manual or documentation for specific guidance on leak detection and repair. The manufacturer may provide recommendations and precautions as well as troubleshooting tips and information on common areas prone to leaks.
    16. Consult manufacturer’s support team:
      — If you are unable to identify or fix the leak, or if the repair involves complex components, it may be advisable to consult with the manufacturer’s technical support or hire a professional technician experienced in vacuum furnace systems.
    See less
    • 0
    • Share
      Share
      • Share onFacebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  2. Asked: July 30, 2020In: Components, Supplies & Materials

    What type of seal is used to seal a rotating shaft?

    VacuumFurnaces.com Answers
    Added an answer on January 18, 2024 at 2:06 pm

    The type of seal commonly used to seal a rotating shaft is called a mechanical seal. A mechanical seal is a device that is used to prevent leakage between a rotating shaft and a stationary housing or casing. It consists of two main components: a stationary seal face and a rotating seal face. The staRead more

    The type of seal commonly used to seal a rotating shaft is called a mechanical seal. A mechanical seal is a device that is used to prevent leakage between a rotating shaft and a stationary housing or casing. It consists of two main components: a stationary seal face and a rotating seal face.

    The stationary seal face is typically attached to the housing or casing, while the rotating seal face is attached to the shaft. When the shaft rotates, the two seal faces come into contact with each other, creating a seal that prevents fluid or gas from leaking out.

    Mechanical seals are designed to withstand the dynamic forces and movements associated with rotating shafts. They are commonly used in various industries, including pumps, compressors, mixers, and other rotating equipment.

    The selection of the appropriate mechanical seal depends on factors such as the equipment’s design, the operating conditions, the fluid type being sealed, pressure, temperature, and shaft speed. It’s essential to select the appropriate seal to ensure effective sealing and prevent issues like fluid leakage and contamination. It is recommended to consult the manufacturer’s guidelines and specifications for the specific application to ensure the correct seal is chosen.

    There are different types of seals used to seal rotating shafts, and the choice depends on the specific application and requirements.

    Here are some common types of seals:

    Lip Seals (Radial Shaft Seals): These are one of the most common types of seals. They have a flexible lip that comes into contact with the rotating shaft, preventing the leakage of fluids.

    Mechanical Seals: These seals use two flat faces pressed together with a spring, creating a barrier to prevent fluid leakage. Mechanical seals are commonly used in pumps and other high-pressure applications.

    Single mechanical seal: This type of seal consists of a single set of seal faces and is suitable for applications with low to moderate pressures and temperatures.

    Double mechanical seal: A double mechanical seal consists of two sets of seal faces with a barrier fluid in between. It provides an additional layer of protection against leakage and is commonly used in applications with high pressures or hazardous fluids.

    Gland Packing (Packing Seals): This involves wrapping a material around the shaft to create a seal. Gland packing can be made of various materials like graphite, PTFE, or other fibrous materials.

    O-Rings: O-rings are simple, round seals usually made of rubber or elastomer materials. They are placed in a groove and compressed to create a seal between stationary and rotating parts.

    V-Ring Seals: V-ring seals are used for shafts that rotate in both directions. They are made of elastomer or rubber for high-speed applications and are effective at preventing contamination from entering the shaft area.

    Mag-Drive Seals: These seals use a magnetic field to transmit torque through the seal without direct contact. They are often used in applications where the prevention of fluid leakage is crucial.

    Face Seals: Also known as axial or floating seals, these consist of two flat faces pressed together to prevent leakage. Face seals are commonly used in heavy-duty applications like construction equipment.

    Labrynth Seals: These seals use a series of barriers or teeth to create a tortuous path for fluids, reducing the likelihood of leakage. Labrynth seals are often used in gearboxes and other rotating machinery.

    Cartridge mechanical seal: A cartridge mechanical seal is a pre-assembled unit that includes the seal faces, springs, and other components. It is designed for easy installation and replacement, reducing downtime during maintenance.

    Split mechanical seal: A split mechanical seal is designed to be installed without disassembling the equipment. It can be split into two halves and installed around the shaft, making it suitable for retrofitting or situations where disassembly is not feasible.

    Additional Reading:Β Here are 3 articles that offer more detailed information about the types of sealing methods used for rotating shafts:

    Rotary Shaft Seals: What They Are and How They Work

    Types of Sealing Methods Used for Rotating Shafts

    Shaft Seals for Rotating Shafts

    See less
    • 0
    • Share
      Share
      • Share onFacebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  3. Asked: July 24, 2020In: Diffusion Pumps

    How can oil be lost from a diffusion pump?

    VacuumFurnaces.com Answers
    Added an answer on January 18, 2024 at 12:35 am
    This answer was edited.

    In a vacuum system, a diffusion pump is a type of pump used to create and maintain a high vacuum environment. It operates based on the principle of vapor jet pumping. To minimize oil loss from a diffusion pump, it's important to operate the pump within its specified parameters, maintain the system pRead more

    In a vacuum system, a diffusion pump is a type of pump used to create and maintain a high vacuum environment. It operates based on the principle of vapor jet pumping.

    To minimize oil loss from a diffusion pump, it’s important to operate the pump within its specified parameters, maintain the system properly, and address any leaks promptly. Regular maintenance and inspection are essential, this includes checking and replacing worn seals, cleaning the pump regularly, and ensuring proper operating conditions. Additionally, using the correct type of high-quality oil for the specific application and regularly checking and replacing the oil as needed can help extend the life of the diffusion pump.

    It’s important to note that the specific factors affecting oil loss from a diffusion pump can vary depending on the design and operating conditions of the pump. Therefore, it is recommended to consult the manufacturer’s guidelines and specifications for the particular diffusion pump.

    Oil can be lost from a diffusion pump through various mechanisms, including:

    Vaporization: Diffusion pumps operate by creating a high vacuum through the diffusion of vapor molecules. The oil in the pump is heated to a high temperature, causing it to vaporize and create a vapor stream. This jet then entrains and transports gas molecules from the vacuum chamber, helping to reduce the pressure. However, some of the oil molecules can escape from the pump as vapor, leading to oil loss of oil over time.

    Backstreaming: Backstreaming occurs when oil vapor from the diffusion pump flows back into the vacuum chamber or system being evacuated. This can happen if the pressure in the vacuum chamber is higher than the pressure in the diffusion pump, causing the oil vapor to flow in the reverse direction. Backstreaming can result in oil contamination of the vacuum system and loss of oil from the diffusion pump.

    Chemical Reactions: Some chemical reactions can take place between the oil and other substances in the system, leading to the formation of by-products that may escape from the pump. This can contribute to the loss of oil over time.

    Leakage: Mechanical leaks in the pump or the vacuum system can allow oil to escape. The pump consists of various seals and gaskets that prevent oil from escaping. However, over time, these seals can degrade or develop leaks, allowing oil to escape from the pump. Regular maintenance and inspection are essential to identify and address any leaks promptly.

    Maintenance and operation errors: Improper maintenance or operation of the diffusion pump can also lead to oil loss. For example, if the pump is not properly cleaned or maintained, oil residues can accumulate and be lost during operation. Similarly, if the pump is operated at excessively high temperatures or pressures, it can cause accelerated oil vaporization and loss.

    See less
    • 0
    • Share
      Share
      • Share onFacebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  4. Asked: July 24, 2020In: Thermocouples

    How do you weld vacuum furnace thermocouples?

    VacuumFurnaces.com Answers
    Added an answer on January 17, 2024 at 3:42 pm
    This answer was edited.

    Welding thermocouples, especially for applications such as vacuum furnaces, is a specialized task that requires specific techniques and considerations due to the sensitivity of the thermocouples and the need for them to function accurately at high temperatures. Thermocouples are typically used to meRead more

    Welding thermocouples, especially for applications such as vacuum furnaces, is a specialized task that requires specific techniques and considerations due to the sensitivity of the thermocouples and the need for them to function accurately at high temperatures. Thermocouples are typically used to measure temperature in vacuum furnaces, and they need to be securely attached to the furnace walls or components.

    It is essential to follow the appropriate safety precautions and to use the correct welding parameters to avoid damaging the thermocouple. Welding thermocouples for vacuum furnaces often requires specialized knowledge and experience, as the integrity of the weld can significantly affect the accuracy and reliability of temperature measurements.

    Always refer to the specific guidelines and recommendations provided by the thermocouple manufacturer and the vacuum furnace manufacturer. Additionally, it’s essential to follow safety precautions and use appropriate protective equipment when performing any welding operations.

    See less
    • 0
    • Share
      Share
      • Share onFacebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  5. Asked: July 28, 2020In: Vacuum Pumps

    Would a booster pump be required for 30-torr vacuum?

    VacuumFurnaces.com Answers
    Added an answer on January 12, 2024 at 6:37 pm

    A 30-torr vacuum level is considered to be in the medium vacuum range. In vacuum systems, a booster pump may be necessary depending on the specific requirements of your application, the capabilities of your primary vacuum pump, and the ultimate vacuum level needed. Firstly, it's important to consideRead more

    A 30-torr vacuum level is considered to be in the medium vacuum range. In vacuum systems, a booster pump may be necessary depending on the specific requirements of your application, the capabilities of your primary vacuum pump, and the ultimate vacuum level needed.

    Firstly, it’s important to consider the type of pumps you are using in your vacuum system, as different pumps have different pumping speeds and capabilities. Common types of vacuum pumps include rotary vane pumps, turbomolecular pumps, diffusion pumps, and others. Each pump type has its own performance characteristics and limitations.

    If you are using a single-stage pump, such as a rotary vane pump, it may be able to achieve a 30-torr vacuum level. However, the need for a booster pump depends on factors such as the initial pressure, the size of the vacuum chamber, and the pumping speed required to reach and maintain the desired vacuum level. If the existing pumping system is not able to achieve the required pumping speed for the given conditions, you might consider adding a booster pump to increase the pumping speed and improve the overall performance of the system.

    A vacuum level of 30 torr is considered a medium vacuum. Whether a booster pump is necessary would depend on factors such as:

    1. The type of primary pump you are using: Different pumps have different capabilities. For example, a roughing pump might not be able to achieve or maintain 30 torr on its own if the volume is large or the gas load is high.
    2. The volume of the system: Larger volumes may require additional pumping capacity to reach the desired vacuum level in a reasonable amount of time.
    3. The gas load: If the system has a high gas load, either from the process or from leaks, a booster pump might be necessary to achieve and maintain the desired vacuum level.
    4. The desired pump-down time: If you need to reach 30 torr quickly, a booster pump can significantly increase the pumping speed.
    5. The ultimate vacuum level: If 30 torr is the ultimate desired vacuum level, it may be achievable with just a primary pump. However, if you need to go below 30 torr, a booster might be needed to support the primary pump.

    In summary, whether a booster pump is required for a 30-torr vacuum depends on the specifics of your application, the type of pumps you are using, and the size of your vacuum system. If you are unsure whether a booster pump is necessary for your specific vacuum application, it is recommended to consult with a vacuum system expert or a vacuum pump manufacturer. They can provide guidance based on the specific parameters and requirements of your system.

    See less
    • 0
    • Share
      Share
      • Share onFacebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
1 … 9 10 11 12 13 … 28

Sidebar

Stat

  • Questions 1k
  • Answers 210
  • Best Answers 0
  • Users 73

Top Members

Greg Kimble

Greg Kimble

  • 281 Points
AlessiaP

AlessiaP

  • 103 Points
Thomas

Thomas

  • 73 Points
patrickduis

patrickduis

  • 60 Points
rcauthon

rcauthon

  • 58 Points
Show More

Questions Categories

Vacuum Pumps
119Questions
, 3Followers
Thermocouples
73Questions
, 7Followers
Diffusion Pumps
70Questions
, 4Followers
Vacuum Technology
64Questions
, 4Followers
Leak Checking, Testing & Detection
55Questions
, 6Followers
Gauges - Vacuum
46Questions
, 3Followers
Vacuum Pressure
40Questions
, 2Followers
Vacuum Furnaces
36Questions
, 4Followers
Standards, Certifications & Accreditations
32Questions
, 1Follower
Hot Zone - Heating Elements
30Questions
, 4Followers
Quench Cooling System
29Questions
, 0Followers
Water Cooling Systems
25Questions
, 1Follower
Process Control System
24Questions
, 2Followers
Vacuum Seals & O-Rings
24Questions
, 1Follower
Instruments - Vacuum
19Questions
, 0Followers
Vacuum Processing
17Questions
, 0Followers
Instruments - Leak Testers
17Questions
, 0Followers
Vacuum Brazing
17Questions
, 4Followers
Temperature Uniformity Survey (TUS)
15Questions
, 3Followers
Instruments - Measurement
14Questions
, 1Follower
Heat Exchanger
13Questions
, 0Followers
Partial Pressure
12Questions
, 1Follower
Backstreaming
12Questions
, 1Follower
System Accuracy Test (SAT)
11Questions
, 2Followers
Baskets, Fixtures & Racks
10Questions
, 1Follower
Sensors - Pressure
10Questions
, 0Followers
Hot Zone - Refractory
9Questions
, 0Followers
Control System - Temperature
9Questions
, 1Follower
Backfilling
9Questions
, 1Follower
Components, Supplies & Materials
8Questions
, 0Followers
Instrumentation & Testing
8Questions
, 0Followers
Hot Zone - Insulation, Heat Shield
8Questions
, 0Followers
Outgassing
8Questions
, 1Follower
Heating Chamber - Hot Zone
8Questions
, 0Followers
Getter Materials
8Questions
, 0Followers
Vacuum Pumping System
8Questions
, 0Followers
Cold Traps
7Questions
, 0Followers
Roughing Pumps
6Questions
, 0Followers
Power Supply
6Questions
, 0Followers
Control System - Programming
6Questions
, 1Follower
Bakeout
6Questions
, 0Followers
Gauges - Pressure
6Questions
, 0Followers
Horizontal Vacuum Furnaces - Batch
5Questions
, 1Follower
Instruments - Calibration
5Questions
, 0Followers
Tubes, Pipes & Fittings
5Questions
, 0Followers
Residual Gas Analyzer (RGA)
5Questions
, 0Followers
Carburizing
5Questions
, 0Followers
Vertical Vacuum Furnaces - Batch
4Questions
, 0Followers
Cryogenic Pumps
4Questions
, 0Followers
Instruments - Detection
4Questions
, 0Followers
Metallurgy
4Questions
, 1Follower
Instruments - Pressure
4Questions
, 0Followers
Instruments - Analyzers
4Questions
, 0Followers
Hot Zone - Fixtures & Supports
4Questions
, 0Followers
Pressure Vessel (Shell-Tank)
3Questions
, 0Followers
Quenchants - Gases
3Questions
, 0Followers
Control System - Vacuum
3Questions
, 0Followers
Recorders
3Questions
, 1Follower
Data Acquisition
3Questions
, 0Followers
Valves
3Questions
, 0Followers
Instruments - Monitoring
3Questions
, 0Followers
Instruments - Temperature
3Questions
, 1Follower
Gas Quench Systems
3Questions
, 0Followers
Oil Quench Vacuum Furnaces
2Questions
, 0Followers
Hearth Assembly & Rails
2Questions
, 0Followers
Holding Pumps
2Questions
, 1Follower
Gas Supply System
2Questions
, 0Followers
Gas Generators
2Questions
, 0Followers
Controllers
2Questions
, 1Follower
Controller Software
2Questions
, 0Followers
Manifolds
2Questions
, 0Followers
Parts Cleaning Equipment
2Questions
, 0Followers
Electrical
2Questions
, 1Follower
Pyrometry
2Questions
, 2Followers
Flanges
2Questions
, 0Followers
Gauges - Mechanical
2Questions
, 0Followers
Vacuum Measurement
2Questions
, 0Followers
Integral Quench Vacuum Furnaces
1Question
, 0Followers
Booster Pumps
1Question
, 0Followers
Quench Nozzles
1Question
, 0Followers
Gas Storage Tanks & Vessels
1Question
, 0Followers
Loaders & Tracks
1Question
, 0Followers
Flowmeters
1Question
, 0Followers
Data Loggers
1Question
, 0Followers
Nitriding
1Question
, 0Followers
Health & Safety Protection
1Question
, 1Follower
Control System – Recording
1Question
, 1Follower
Control System – Testing
1Question
, 0Followers
Backfill Gases
1Question
, 0Followers
Vacuum Pump Maintenance
1Question
, 0Followers
Vacuum Pump Performance Checks
1Question
, 0Followers
Semi & Continuous Vacuum Furnaces
0Questions
, 0Followers
Other Vacuum Furnaces
0Questions
, 0Followers
Elevator System
0Questions
, 0Followers
Hydraulic Power Units
0Questions
, 1Follower
Tank Base Assembly
0Questions
, 0Followers
Pump Chillers
0Questions
, 0Followers
Quench Blower Assembly
0Questions
, 0Followers
Baffles
0Questions
, 0Followers
Water Tank Assembly
0Questions
, 0Followers
Cooling Towers
0Questions
, 0Followers
Parts Handling Equipment
0Questions
, 0Followers
Electric Motors
0Questions
, 0Followers
Actuators
0Questions
, 0Followers
Other Sub-Systems
0Questions
, 0Followers
Hydraulics
0Questions
, 0Followers
Mechanical
0Questions
, 0Followers
Pneumatics
0Questions
, 0Followers
Solenoids
0Questions
, 0Followers
Vacuum Meters
0Questions
, 0Followers
Vacuum Furnace Maintenance
0Questions
, 1Follower
Other
0Questions
, 0Followers
Control System
0Questions
, 1Follower
Instruments - Sensors
0Questions
, 0Followers
Vacuum Valves
0Questions
, 0Followers
Feedthrus
0Questions
, 0Followers
Pressure Relief Valves
0Questions
, 0Followers
Control System – Calibration
0Questions
, 0Followers
Gas Surge Tanks
0Questions
, 0Followers
Work Preparation & Handling
0Questions
, 1Follower
Fixturing Techniques
0Questions
, 0Followers
Heating Chamber – Hot Zone Construction
0Questions
, 0Followers
Vacuum Measurement Systems
0Questions
, 0Followers
Sensors – Vapor Pressure
0Questions
, 0Followers
Mean Free Path
0Questions
, 0Followers
Leak Repair
0Questions
, 0Followers
Eutectic Melting
0Questions
, 1Follower
Cycle Recipe Design
0Questions
, 0Followers
Preheating, Soaking & Ramp Rates
0Questions
, 0Followers
Heat Exchanger Maintenance
0Questions
, 0Followers
Maintenance Procedures
0Questions
, 0Followers
Vacuum Seals & O-rings Maintenance
0Questions
, 0Followers
Cleaning of Parts
0Questions
, 0Followers
Cleaning of Fixtures
0Questions
, 0Followers
Vacuum Furnace Systems & Design
0Questions
, 0Followers
Heat Exchanger Design
0Questions
, 0Followers
Basket, Fixture & Rack Design
0Questions
, 0Followers
Vacuum Furnace Construction
0Questions
, 0Followers
Hot Zone & Refractory Designs (Carbon & Metal)
0Questions
, 0Followers
Gas Quench System Design
0Questions
, 0Followers
Water Cooling System Design
0Questions
, 0Followers
Pumping System Design
0Questions
, 0Followers
Gas Nozzles & Hearth Design
0Questions
, 0Followers
Vacuum Furnace Installation & Commissioning
0Questions
, 0Followers
Vacuum Furnace Decommissioning
0Questions
, 0Followers
Plant Safety & Best Practices
0Questions
, 0Followers
Vacuum Heat Treat Applications
0Questions
, 0Followers

Explore

  • Home
  • Categories
  • Questions
    • New Questions
    • Trending Questions
  • FAQ Blog
  • Groups
  • Tags
  • Points Rewards
  • Users
  • Help

Footer

VacuumFurnaces.com

A mobile and online question-and-answer directory for vacuum furnace end-users, commercial and in-house vacuum heat treaters, and equipment, product, and service suppliers. Our knowledge networking platform allows for professional connections on the basis of asking questions, finding answers, and sharing common goals and pursuits in the best interests of all our members.

About Us

  • About Us!
  • FAQ Blog
  • Resources
    • Free to Join
    • Answer it Forward
    • What is an FAQ Blog Post?
  • Contact Us
  • Sitemap

Legal Stuff

  • Terms & Conditions
  • Privacy Policy

Help

  • Membership Benefits
  • Support

Follow

© 2023 Discy. All Rights Reserved

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok